MODELING AND SIMULATION ANALYTIC SYLLABUS Academic Year 2023-2024 Year of study III / Semester Ii

1. Information on academic programme

in memanen en academie programme	
1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Computer Science and Engineering
1.3. Department	Computer Science, Mathematics and Electronics Department
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science, COR 251201, 251204, 251203

2. Information of Course Matter

2.1. Course		Modeling and sim	ulation	2.	.2. Code		CSE 309	
2.3. Course Leader			Full Prof. PhD. Habil., Nicoleta		eaz			
2.4. Seminar Tutor			Asist. Ph.D student., Cristea Daniela		Asist. Ph.D student., Cristea Da			
2.5. Academic Year	II	2.6. Semester	11	2.2. Type of Evaluation (E – final exam/ CE - colloquy examination / CA -continuous assessment)	E	2.8. Type of cc (C – Compulso optional, F - Fa	ry, Op –	С

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of hours	48	3.5. course	24	3.6. seminar, laboratory	24
in the curriculum					
Allocation of time:					Hours
Individual study of readers					20
Documentation (library)					13
Home assignments, Essays, Portfolios				40	
Tutorials				-	
Assessment (examinations)				29	
Other activities					-

3.7 Total number of hours for individual study	102
3.9 Total number of hours per semester	150
3.10 Number of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	There are no compulsory prerequisites but the following courses are useful:		
	1. Probability and mathematical statistics		
	2. Mathematical software		
	3. Numerical calculus		
	4. Differential and partial derivatives equations		
4.2. competence-based	C4. The use of the theoretical basis of computer science and of formal models		
	(mathematical concepts)		

5. Requisites (where applicable)

J. Requisites (where applicable)	
5.1. course-related	The course is hosted in a room equipped with video projector and computers having installed Office (Excel)/Open Office and Matlab/Octave. The tutorial is at the students' disposal (in the library). Note: The students are strongly encouraged to attend the course, in order to gain knowledge for practical applications. In the online approach other appropriate tools and methods can be added on Microsoft Teams or similar.
5.2. seminar/laboratory-based	The laboratory is hosted in a room equipped with video projector and computers having installed Office (Excel)/Open Office and Matlab/Octave. The tutorial is at the students' disposal (in the library). Note: The attendance of the laboratory classes is compulsory, a student who doesn't attend all classes being not allowed at the exam. The missed classes can be recovered by a student, during other classes, before the final examination, by completing a portfolio with all homewoks related to missed subjects. In the online approach other appropriate tools and methods can be added on Microsoft Teams or similar.

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Professional competences	The course is focused on the d evelopment of skills required to solve complex modeling problems; the graduate will be able to translate a real problem in mathematical language and then to solve that mathematical problem based on mathematical concepts implemented in a software product. Aiming the development of these specific competences, the course assures the knowledge on modeling techniques which contributes to the general professional competences given by the study program, regarding The use of the theoretical basis of computer science and of formal models (C4) . These can be clearly described by the level descriptors related to: C4.1 The definition of base concepts and principles of computer science and mathematics as well as of the mathematical theories and models. C4.2 The interpretation of mathematical and computer science (formal) models. C4.3 The identification of appropriate models and methods for solving real-life problems. C4.4 The use of simulation in the study of the behavior of developed models and evaluation of results. C4.5 The embedding of formal models in specific applications in various domains.
Transversal competences	-

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course	The general aim related to this course consists in getting knowledge which helps the students to use the mathematical concepts together with a specific software to model phenomenon from various fields as medicine, physics, chemistry, economy, sociology, etc, the students acquiring not only the knowledge of basics mathematical modeling aided by software products but also, they become open minded regarding the interdisciplinary matter and hence they get competencies in the use of the theoretical basis of computer science and of formal models in solving specific problems from various fields.
7.2 Specific objectives of the course	It is aiming the development of some specific competences to model phenomenon with computer's help, based on mathematical modeling concepts, modeling and simulation processes and practical studies, such that the student is in the end capable to define base concepts and principles of computer science and mathematics as well as of the mathematical theories and models, to give the interpretation of mathematical and computer science (formal) models, to identify the appropriate models and methods for solving real-life problems, to use the simulation in the study of the behavior of developed models and evaluation of results and to embed the formal models in specific applications in various domains.

8. Course contents		
8.1 Course (learning units)	Teaching methods	Remarks
I. Elements of mathematical modeling (1 hour)	Lecture, discussion	Minimal
1. Introduction		lectures: 2
2. Process of mathematical modeling		(see the list)
3. Types of models. Regression models		(
4. Simulation of the values of a stochastic variable		
5. Examples of mathematical models		
II. Regression models. Generalities. Examples in Excel,	Lecture, discussion, exemplification	Minimal
Matlab/Octave (1 hour)		lectures: 2
1. General concepts of correlation and regression		(see the list)
2. Simple versus multiple regression		
3. Examples		
III. Simple linear regression model (8 hours)	Lecture, discussion, exemplification in	Minimal
1. Correlogram analysis	Excel and Matlab/Octave	
2. Coefficient of linear correlation	Excel and Matlad/Octave	lectures: 2
3. Definition of the linear simple model		(see the list)
4. Estimation of the parameters		
5. Prediction		
6. Inferences		
7. Excel functions. Examples and applications		
8. Matlab/Octave functions. Examples and applications		
IV. Multiple linear regression model (5 hours)	Lecture, discussion, exemplification in	Minimal
1. Definition of the multiple linear regression model	Excel and Matlab/Octave	lectures: 2
2. Predictors selection		(see the list)
3. Estimation of the parameters		
4. Goodness of fit		
5. Excel functions. Examples and applications.		
6. Matlab/Octave functions. Examples and applications		
V. Non linear models. Examples in Excel/Matlab/Octave (5 hours)	Lecture, discussion, exemplification in	Minimal
1. Non linear models. Linearisable models	Excel and Matlab/Octave	lectures: 2
2. Comparative analysis of the regression models		(see the list)
 Polynomial model Exponential model 		
5. Hyperbolic model		
6. Excel functions. Examples and applications		
7. Matlab/Octave functions. Examples and applications		
VI. Comparative analysis of the regression models – applications (4	Lecture, discussion, exemplification in	Minimal
The comparative analysis of the regression models applications (+		

hours)	Excel and Matlab/Octave	lectures: 2
1. Regression models in Excel 2. Regression models in Matlab/Octave		(see the list)
References		
1. E.A. Bender, An introduction to mathematical modeling techniques, 2. N.Breaz, Mathematical modeling and simulation, Univ. "1 Decembrie		`
3. D. J. Higham, N. J. Higham, MATLAB Guide, 2nd edition, SIAM, 20)
4. S. Lee , M. Buzby, Mathematical Modeling and Simulation with Matla		2021
5. M. P. McLaughlin, A tutorial on Mathematical Modeling (www.causa		
6. C. Moler – Numerical Computing in MATLAB, SIAM, 2005		
7. A. Stahel, Octave at BFH-TI Biel, Lecture notes, 2015 (<i>staff.ti.bfh.ch</i> 8. K. Velten, Mathematical Modeling and Simulation, Introduction for so	/sna1/Labs/PWF/Documentation/OctaveAtBF	H.pat)
9. *** – Documentation for MathWorks Products- http://www.mathworks	com/	
10. *** - Documentation for Octave GNU Octave https://octave.org		
8.2 Seminars-laboratories	Teaching methods	
1. Basics concepts in Excel and Matlab/Octave (6 hours)	Coordination and evaluation of	Minimal
 the use of commands dedicated to graphics the use of mathematical/statistical functions 	computer-based works	lectures: 2 (see the list)
- how to write a program		
- how to generate random numbers		
2. Applications in Excel for simple linear regression model (3	Coordination and evaluation of	Minimal
hours)	computer based works	lectures: 2 (see
 coefficient of correlations and correlogram determination of the parameters 		the list)
- statistical inference		
- regression analysis		
- forecast		
3. Applications in Matlab/Octave for simple linear regression	Coordination and evaluation of	Minimal
model (4 hours) -simple linear model (correlation coefficient, correlogram, parameters,	computer based works	lectures: 2 (see the list)
inference, goodness of fit and prediction)		
4. Applications in Excel for multiple linear regression model (1	Coordination and evaluation of	Minimal
hour)	computer based works	lectures: 2 (see
 determination of the parameters, inferences selection of the predictors 		the list)
5. Applications in Matlab/Octave for multiple regression model (4	Coordination and evaluation of	Minimal
hours)	computer based works	lectures: 2 (see
- determination of the parameters, inferences		the list)
 selection of the predictors 6. Applications in Excel for polynomial model (1 hour) 	Coordination and evaluation of	Minimal
- how to work with Excel functions from the linear regression to fit the	computer based works	lectures: 2 (see
data with polynomial curve		the list)
7. Applications in Matlab/Octave for polynomial model (2 hours)	Coordination and evaluation of	Minimal
- Matlab/Octave functions for polynomial fitting	computer based works	lectures: 2 (see
 graphical user interface for polynomial fitting 8. Applications in Excel for other non linear models (exponential, 	Coordination and evaluation of	the list) Minimal
hyperbolic) (1 hour)	computer based works	lectures: 2 (see
- Excel functions for exponential model		the list)
-how to use Excel function for linear models in the hyperbolic		
regression		
9 . Applications in Matlab/Octave for other non linear models (exponential, hyperbolic) (1 hour)	Coordination and evaluation of computer based works	Minimal lectures: 2 (see
- how to use Excel function for linear models in the exponential and	computer based works	the list)
hyperbolic regression		
- graphical user interface for various models		
10. Applications in Excel/Matlab/Octave for the selection of the	Coordination and evaluation of	Minimal
 best model for a given data set (1 hour) the selection of the data set 	computer based works	lectures: 2 (see the list)
- comparative analysis of various models		
References		
1. E.A. Bender, An introduction to mathematical modeling techniques,		
2. N.Breaz, Mathematical modeling and simulation, Univ. "1 Decembrie)
 D. J. Higham, N. J. Higham, MATLAB Guide, 2nd edition, SIAM, 20 S. Lee, M. Buzby, Mathematical Modeling and Simulation with Matla 		2021
	s, i denorior. Oniversity of Alderica Outriedel, 2	

5. **M. P. McLaughlin**, A tutorial on Mathematical Modeling (<u>www.causascientia.org/math_stat/Tutorial.pdf</u></u>), 1999 6. **Cleve Moler** – Numerical Computing in MATLAB, SIAM, 2005 7. ***– Documentation for MathWorks Products, R2009a- <u>http://www.mathworks.com/</u> 8. *** - Documentation for Octave <u>GNU Octave https://octave.org</u>

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

The skill's development regarding the understanding and modeling of phenomenon from various fields, the knowledge of mathematical concepts and the capacity to project and use of specific software contribute to the formation of a complete specialist, capable to take part at interdisciplinary research teams or at the software projecting teams, the course answering in this way to the necessity of the graduate to be adapted at various fields from the labor market, where specialists in computer science are needed.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	-checking the modelling concepts - correct use of mathematical tools requested by modeling problem - correct understanding and interpretation of the results	Continuous assessment: - testing based on the theoretical concepts of the modeling in the applicative framework -25% Final evaluation: - a final project of modeling based on real or simulated data in Excel/Matlab/Octave, evaluation based on a set of questions related to modeling concepts in the particular framework of the project -25%	50%
10.5 Seminar/laboratory	 the students have to solve correctly modeling problems from their practical works required during classes; correct use of mathematical software requested by modeling problems in the final project following of modeling steps in the final project 	Continuous assessment: During the classes, the assessment of practical skills in modeling will be do done, by evaluating the portfolio containing all required practical works 25% Final evaluation: - a final project of modeling based on real or simulated data in Excel/Matlab/Octave, evaluation of the correctness of the project -25%	50%

10.6 Minimum performance standard:

Correct solving of some mathematical problems having a medium level of complexity, namely, the elaboration of a project containing models based on real or simulated data, using Matlab/Excel/Octave (minimum performance standard to get the ECTS: modeling a set of data with a linear simple model).

Note: Please see also the alignment 5 (Requisites), related to compulsory attendance of the practical classes. Also, a student who doesn't attend the Final examination, can not get a final mark even if he/she has a mark for continuous assessment. The assessment scale is from 1 to 10, and 5 is minimum to pass the exam.

Data completării

Semnătura titularului de curs

Semnătura titularului de seminar

31.01.2024

Data avizării în departament

Semnătura directorului de departament