SOFTWARE ENGINEERING, 2025-2026

ANEXA 1
SYLLABUS

Year II1 /11

1. Information on academic programme

1.1. University

»1 Decembrie 1918 University of Alba lIulia

1.2. Faculty

Faculty of Informatics and Engineering

1.3. Department

Informatics, Mathematics and Electronics Department

1.4. Field of Study

Computer Science

1.5. Cycle of Study

Bachelor

1.6. Academic programme / Qualification

Computer Science

Analyst 251201

Computer System Programmer 251204
Computer System Engineer 251203

ESCO-08: 2511/ Systems Analyst, 2512/ Software developers

2 Information of Course Matter

2.1. Course

‘ SOFTWARE ENGINEERING

[2.2. Code

CSE 311

2.3. Course Leader

Oroian — Boca Maria Loredana

2.4. Seminar Tutor

Oroian — Boca Maria Loredana

2.5. Academic 111
Year

2.6. Semester

II 2.7. Type of

Evaluation
(E — final exam/

CE - colloquy examination /
CA -continuous assessment)

E

2.8. Type of course E

(C— Compulsory, Op — optional,

F - Facultative)

3. Course Structure (Weekly number of hours)

3.1. Weekly number of | 5 3.2. course 2 3.3. seminar, laboratory | 3
hours

3.4. Total number of 60 3.5. course 24 3.6. seminar, laboratory | 36
hours in the curriculum

Allocation of time:

Individual study of readers 20
Documentation (library) 20
Home assignments, Essays, Portfolios, projects 20
Tutorials 20
Assessment (examinations) 10

Other activities.......

3.7 Total number of hours for individual 90
study

3.8 Total number of hours in the 60
curriculum

3.9 Total number of hours per semester 150
3.10 Number of ECTS 6

4. Prerequisites (where applicable)

4.1. curriculum-based

INFO209, INFO207

4.2. competence-based

Room equipped with video projector / board

Laboratory — computer, Project Management applications.

5. Requisites (where applicable)

5.1. course-related

Room equipped with video projector / boar

5.2. seminar/laboratory-based Laboratory — computer, Software: Microsoft Project.

6. Specific competences to be aquired (chosen by the course leader from the programme general

competences grid)

Professional competences

C2. Development and maintenance of computer applications

Transversal competences

7. Course objectives (as per the program specific competences grid)

7.1 General objectives of
the course

Abilities to develop and manage all stack for problems solving regarding
information’s structuring, storing, processing, and documentation and date
description.

7.2 Specific objectives of
the course

Explain basic concepts in the field of software engineering and process stages
software development to describe and compare models of software development
processes

Analyze user requirements,identify solutions, compare and select tools
appropriate software to resolve a given issue. Use proper UML core charts (UC,
activity, classes, sequences, states) in system analysis and design

software.

To argue the importance of the field software engineering and ethical principles
of the engineering profession software. Develop a correct relationship with
clients.

8. Course contents

8.1 Course (learning units) Teaching methods Remarks
1. Introduction to software engineering Lecture, conversation,

1.1 Development of software systems exemplification

1.2 Software engineering features

1.3 Notes on the development of a software product

2. The life cycle of a software product Lecture, conversation,

2.1 Phases of the life cycle exemplification

2.2 Cascade models
2.3 Iterative models

2.4 Extreme Programming Methodology

3. Requirements engineering
3.1 Specific issues

3.2 Types of requirements
3.3 Requirements analysis

3.4 Specification of requirements

Lecture, conversation,
exemplification

4. Software modeling

4.1 Modeling languages

4.2 Structured modeling

4.3 Object Oriented Modeling
4.4 UML Language

Lecture, conversation,
exemplification

5. Designing software systems

5.1 Software architectures

5.2 Characteristics of a software system
5.3 Architectural Styles

5.4 Architectural models

Lecture, conversation,
exemplification

6. Development of software systems

6.1 RAD

6.2 Incremental development

6.3 Prototyping

6.4 Agile methods

6.5 Development cycle in extreme programming
6.6 Reuse in the development of a software system

Lecture, conversation,
exemplification

7. Testing and validation

7.1 Verification and Validation Process
7.2 Static and dynamic verification

7.3 Testing and debugging

7.4 Planning the test

7.5 Static analysis

7.6 Testing and validating systems

Lecture, conversation,
exemplification

9. Case study

Lecture, conversation,
exemplification

References

1. BASS, L., CLEMENTS, P., KAZMAN R.: Software Architecture in Practice, 2nd ed., Addison-Wesley, 2003
2. MARTIN, ROBERT CECIL: Agile software development: principles, patterns, and practices, Pearson

Education, 2002

3. McCONNELL, STEVE: Code Complete, 2nd ed., Microsoft Press, 2004
4. OTERO, C.E.: Software Engineering Design, CRC Press, 2012.

5. Gillian Lemke, The Software Development Life Cycle and Its Application, Eastern Michigan University, 2018.

Seminars-laboratories

Teaching methods

Microsoft project and different tools, general presentation,
description of the functionalities, examples

Project-work, computer-based
activities, laboratory activities

Applications frame and project design using project
management tools

Project-work, computer-based
activities, laboratory activities

UML description using software tools, Use proper UML
core charts (UC, activity, classes, sequences, states)

Project-work, computer-based
activities, laboratory activities

Designing tools. Designing objects — based content.

Project-work, computer-based
activities, laboratory activities

Designing software systems, Software architectures,
Arhitectural Style, Architectural models

Project-work, computer-based
activities, laboratory activities

Agile methods, tool for monitoring and planning tasks.(Jira,
Mantis, Scrum monitoring)

Project-work, computer-based
activities, laboratory activities

Testing and validation tools

Project-work, computer-based
activities, laboratory activities

Complet case study. Project.

Project-work, computer-based
activities, laboratory activities

References

1. BASS, L., CLEMENTS, P., KAZMAN R.: Software Architecture in Practice, 2nd ed., Addison-Wesley, 2003
2. MARTIN, ROBERT CECIL: Agile software development: principles, patterns, and practices, Pearson
Education, 2002

3. McCONNELL, STEVE: Code Complete, 2nd ed., Microsoft Press, 2004

4. OTERO, C.E.: Software Engineering Design, CRC Press, 2012.

5. Gillian Lemke, The Software Development Life Cycle and Its Application, Eastern Michigan University, 2018.

site: http://softwareengineeringdesign.com/Default.htm (2019)
https://creately.com/blog/diagrams/uml-diagram-types-examples/ (2023)
https://staruml.io/ (2023)

9. Corroboration of course contents with the expectations of the epistemic community’s significant
representatives, professional associations and employers in the field of the academic programme
Not applicable
10. Assessment
Activity 10.1 Evaluation criteria 10.2 Evaluation methods | 10.3 Percentage of final
grade
10.4 Course Final evaluation Project 60%
10.5 Seminar/laboratory | Continuous assessment Laboratory activities 40%

portfolio

10.6 Minimum performance standard:

Implementation and documentation of the software units in a web applications including object oriented
programming language and efficiently using the related concepts. A minimum grade of 5 is required for each

evaluation.

Submission date

Course leader signature

Oroian — Boca Maria Loredana

Date of approval by Department members

Date of approval by Faculty Council

Seminar tutor signature
Oroian — Boca Maria Loredana

Department director signature
Lect.univ.dr. Aldea Mihaela

Signature of the Dean

Conf.Univ.dr. Rotar Corina

http://softwareengineeringdesign.com/Default.htm

