SYLLABUS MACHINE LEARNING

1. Information on academic programme	
1.1. University	"1 Decembrie 1918" din Alba Iulia
1.2. Faculty	Faculty of Informatics and Engineering
1.3. Department	Informatics, Mathematics and Electronics Department
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science

2 Information of Course Matter

2. Information of Course Matter								
2.1. Course Machine Learn			ning	2.2.	Code	(CSE 311	
2.3. Course Leader Lect.univ.dr. Muntean Ma			dr. Muntean Maria-V	/iorela				
2.4. Seminar Tutor Asist.univ.drd. Cristea Daniela								
2.5. Academic	III	2.6. Semester	II	2.7. Type of	Ε	2.8. Type of c	course	Op
Year			Evaluation		(C–Compulsory, O	p – optional,		
			(E - final exam/		F - Facultative)			
				CE - colloquy examination	/			
				CA -continuous assessment)			

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	5	3.2. course	2	3.3. seminar, laboratory	3		
hours							
3.4. Total number of	60	3.5. course	24	3.6. seminar, laboratory	36		
hours in the curriculum							
Allocation of time:	Allocation of time: Hours						
Individual study of readers 40							
Documentation (library)							
Home assignments, Essays, Portfolios					18		
Tutorials							
Assessment (examinations)					12		
Other activities							

3.7 Total number of hours for individual study	90
3.9 Total number of hours per semester	150
3.10Number of ECTS	6

4. Prerequisites (*where applicable*)

4.1. curriculum-based	1. Artificial intelligence
4.2. competence-based	 C2.1 The identification of appropriate methodologies for software systems development. C2.2 The identification and explanation of appropriate mechanisms for software systems specification. C2.3 The use of methodologies, specification mechanisms and development environments for the development of computer applications. C2.4. The use of appropriate criteria and methods for the evaluation of computer applications.

C2.5. The development of dedicated computer projects.
C3.1. The description of concepts, theories and models used in the application field.
C3.2 The identification and explanation of base computer models that is suitable for the application
domain.
C3.3. The use of computer and mathematical models and tools to solve specific problems in the
application field.
C3.4. Data and model analysis.
C3.5. The development of software components of interdisciplinary projects.
C4.1 The definition of base concepts and principles of computer science and mathematics as well as
of the mathematical theories and models.
C4.2 The interpretation of mathematical and computer science (formal) models.
C4 3 The identification of appropriate models and methods for solving real-life problems
<i>C4</i> 4 <i>The use of simulation in the study of the behavior of developed models and evaluation of results</i>
C4.5 The embedding of formal models in specific applications in various domains
ens the enocuting of formal models in specific applications in various admains.

5. Requisites (*where applicable*)

1	
5.1. course-related	Room equipped with video projector and board
5.2. seminar/laboratory-	Laboratory – computers, Software: Matlab minimum 6.5, Python minimum 2.7,
based	Internet access.

6. Specific competences to be acquired (chosen by the course leader from the programme general competences grid)

Professional competences	C1. Programming in high-level languages
-	<i>C1.1 The appropriate description of programming paradigms and of specific language</i>
	mechanisms, as well as the identification of differences between semantic and syntactic
	aspects.
	<i>C1.2 The explaining of existing software applications using different abstraction layers</i>
	(architecture, packages, classes, methods), correctly using base knowledge.
	C1.3 The development of correct source codes and the testing of various components in a
	known programming language, given a set of design specifications.
	C1.4 The testing of various applications given specific testing plans
	C1.5 Developing program units and their documentation.
	C2. Development and maintenance of computer applications
	<i>C2.1 The identification of appropriate methodologies for software systems development.</i>
	C2.2 The identification and explanation of appropriate mechanisms for software systems
	specification.
	<i>C2.3 The use of methodologies, specification mechanisms and development environments</i>
	for the development of computer applications.
	<i>C2.4. The use of appropriate criteria and methods for the evaluation of computer</i>
	applications.
	<i>C2.5. The development of dedicated computer projects.</i>
	C3. The use of computer tools in an interdisciplinary context
	<i>C3.1.</i> The description of concepts, theories and models used in the application field.
	<i>C3.2 The identification and explanation of base computer models that are suitable for the</i>
	application domain.
	<i>C3.3. The use of computer and mathematical models and tools to solve specific problems</i>
	in the application field.
	C3.4. Data and model analysis.
	C3.5. The development of software components of interdisciplinary projects.
Transversal competences	-

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course	The course provides an introduction to the theory and practice of
	Machine Learning as part of Artificial Intelligence.
	The course presents the main learning concepts: decision trees,
	neural networks, instance-based learning, analytical learning,
	Bayesian learning, Support Vector Machines. It also introduces the
	main approaches and developments in pattern recognition (statistical
	approach, neural approach, syntactic approach).
7.2 Specific objectives of the course	

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. Introduction to Machine Learning. Concept learning.	Lecture, conversation, exemplification	2h
2. Decision Trees	Lecture, conversation, exemplification	2h
3. Artificial Neural Networks	Lecture, conversation, exemplification	2h
4. Assumptions evaluation and Bayesian learning.	Lecture, conversation, exemplification	2h
5. Instance-based learning. Analytical learning	Lecture, conversation, exemplification	2h
6. Machine Learning and Data Mining	Lecture, conversation, exemplification	2h
7. Support Vector Machines	Lecture, conversation, exemplification	2h
8. Approaches to pattern recognition. Classification methods.	Lecture, conversation, exemplification	2h
9. Statistical approaches to pattern recognition. Feature selection.	Lecture, conversation, exemplification	2h
10. Syntactic elements in pattern recognitions	Lecture, conversation, exemplification	2h
11. Clustering methods. K-means algorithm.	Lecture, conversation, exemplification	2h
12. Image Analysis Techniques.	Lecture, conversation, exemplification	2h
Seminars-laboratories	Teaching methods	
1. Supervised and unsupervised learning. Applications in Matlab and R language.	Laboratory activities	3h
2. Bayesian learning. Matlab implementations	Project-work, computer-based activities, laboratory activities	3h
3. Instance-based learning. Analytical learning. Matlab and R language implementations	Project-work, computer-based activities, laboratory activities	3h
4. Decision trees. Implementation and examples.	Project-work, computer-based activities, laboratory activities	3h
5. Classification techniques using the k-nearest neighbor. Implementation in one programming language of choice (Matlab, R, C++, Python)	Project-work, computer-based activities, laboratory activities	3h

6.	Support Vector Machines. Matlab implementation.	Project-work, computer-based activities, laboratory activities	3h
7.	Neural networks. Applications and examples.	Project-work, computer-based	3h
8.	Unsupervised K-means algorithm. Applications and examples.	Project-work, computer-based activities, laboratory activities	3h
9.	Approaches to pattern recognition. Feature selection. Syntactic elements in pattern recognitions. Matlab implementations.	Project-work, computer-based activities, laboratory activities	3h
10.	Image Analysis Techniques. Examples.	Project-work, computer-based activities, laboratory activities	6h
11.	Practical evaluation.	Project-work, computer-based activities, laboratory activities	3h

References

- 1. Bishop, Christopher M., *Pattern Recognition and Machine Learning*, 1st ed. 2006 Springer-Verlag New York, Inc. Secaucus, NJ, USA, ISBN 978-0-387-31073-2.
- 2. Stephen Marsland, *Machine Learning: An Algorithmic Perspective*, Chapman & Hall/CRC Machine Learning & Pattern Recognition, 2009, ISBN-10: 1420067184, ISBN-13: 978-1420067187.
- 3. Mitchell, T., Machine Learning, The McGraw-Hill Companies, Inc., 1997, pp. 52-78.
- 4. Morariu, D. I., *Text Mining Methods based on Support Vector Machines*, ed. MATRIX ROM, București, 2008.
- 5. Kaelbling, L. P., Learning in Embedded Systems, MIT Press, 1993.
- 6. Cristianini, N., and Shawe-Taylor, J., *An Introduction to Support Vector Machines and Other Kernelbased Learning Methods*, Cambridge University Press, 2000, ISBN: 0521780195.
- 7. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.
- 8. Abe, S., *Support Vector Machines for Pattern Classification*, Second Edition, Springer New York Dordrecht Heidelberg London, 2010, ISBN: 978-1-84996-097-7, DOI: 10.1007/978-1-84996-098-4.
- 9. Lampert, C., *Kernel Methods in Computer Vision*, Foundations and Trends in Computer Graphics and Vision: Vol. 4: No 3, 2009.
- 10. Han, J., Kamber, M., *Data Mining: Concepts and Techniques*, Second Edition, Morgan Kaufmann Press, Elsevier Inc, San Francisco, ISBN 13: 978-1-55860-901-3, ISBN 10: 1-55860-901-6, 2006.
- 11. Bramer, M., *Principles of Data Mining*, Springer-Verlag, London, ISBN-10: 1-84628-765-0, ISBN-13: 978-1-84628-765-7, 2007.
- 12. Witten, I., H., Frank, E., *Data Mining. Practical Machine Learning Tools and Techniques*, Second Edition, Kaufmann Press, Elsevier Inc, San Francisco, ISBN: 0-12-088407-0, 2005.
- 13. Kargupta, H., Han, J., Yu, P., S., Motwani, R., Kumar, V., *Next Generation of Data Mining*, Chapman & Hall / CRC, Taylor and Francis Group, 2010, ISBN: 978-1-4200-8586-0.
- 14. RUSSELL, Stuart J., NORVIG, Peter, *Artificial Intelligence: a modern approach*, 3rd ed., Upper Saddle River, NJ: Pearson Education, 2010, ISBN 978-0-13-207148-2.
- 15. PYTHON MACHINE LEARNING: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, Sebastian RASCHKA; Vahid MIRJALILI (2019), Autori: RASCHKA, Sebastian; MIRJALILI, Vahid, Ediție: Editia a treia, Third Edition - Includes TensorFlow 2, GANs, and Reinforcement Learning, ISBN: 9781789955750
- 16. HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS / Aurelien GERON (2019), Autori: GERON, Aurelien, Ediție: Editia a doua, ISBN: 9781492032649
- 17. http://www.cs.uiuc.edu/class/fa06/cs446/
- 18. IEEE Transactions on Machine Learning and Pattern Recognition

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

-

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final		
			grade		
10.4 Course	Final evaluation	Tests, control papers	50%		
10.5 Seminar/laboratory	Continuous assessment	Laboratory	50%		
		activities/projects portfolio			
10.6 Minimum performance standard: grade 5 on all criteria					

Submission date

Course leader signature

Seminar tutor signature

Date of approval by Department members

Department director signature