SYLLABUS

Programming Environments and tools

1. Information on academic programme

1.1. University	"1 Decembrie 1918"
1.2. Faculty	Faculty of Informatics and Engineering
1.3. Department	Science and Engineering Department
1.4. Area	Computer Science
1.5. Level	undergraduate
1.6. Specialization	Computer Science

2. Information of Course Matter

2.1. Course		Programming Environments and tools		2.2.	Code		CSE 30)5	
2.3. Course Leader Incze Arpad									
2.4. Seminar Tutor Incze Arpad									
2.5. Academic	III	2.6. Semester	I	2.7. Type of		E	2.8. Type of		Op
Year				Evaluatio	n		(C–Compulsory,	Op – optional,	
				(E – final exam/			F - Facultative)		
				CE - colloquy exam	ination /				
				CA -continuous asse	essment)				

3. Course Structure (Weekly number of hours)

3.1. Weekly number of hours	6	3.2. course	2	3.3. seminar, laboratory	4
3.4. Total number of hours in the curriculum	84	3.5. course	28	3.6. seminar, laboratory	56
Allocation of time:					
Individual study of readers					32
Documentation (library)					12
Home assignments, Essays, Portfolios					16
Tutorials					-
Assessment (examinations)					6
Other activities					-

3.7 Total number of hours for individual study	66
3.9 Total number of hours per semester	150
3.10 Number of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	Mathematical Modelling and Simulation
4.2. competence-based	C3.3. The use of computer software environments to solve specific problems in the
	application field.
	C3.4. Data and model analysis.
	C3.5. The development of software components of interdisciplinary projects.

5.Requisites (where applicable)

5.1. course-related	Classroom equipped with video projector / board. Microsoft Teams for online
	courses
5.2. seminar/laboratory-based	Laboratory – computers, Software: Microsoft Visual Studio, Internet access.

6.Specific competences to be acquired (chosen by the course leader from the programme general competences grid)

Professional competences	C2. Development and maintenance of computer applications		
1	C2.4. The use of appropriate criteria and methods for the evaluation of computer		
	applications.		
	C2.5. The development of dedicated computer projects.		
	C3. The use of computer tools in an interdisciplinary context		
	C3.1. The description of concepts, theories and models used in the application		
	field.		
	C3.2 The identification and explanation of base computer models that are suitable		
	for the application domain.		
	C3.3. The use of computer and mathematical models and tools to solve specific		
	problems in the application field.		
	C3.4. Data and model analysis.		
	C3.5. The development of software components of interdisciplinary projects.		
Transversal competences	CT3. The use of efficient methods and techniques for learning, scientific inquiry		
	and development of the capacities of using knowledge, of adapting to a dynamic		
	society and of communication in English.		

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of	This course aims to introduce students to the basic concepts and features of C#			
the course	programming. It is hoped that the knowledge would enhance the programming			
	expertise of students to enable them develop C# based applications.			
7.2 Specific objectives of	By taking this course the students will be able to:			
the course	•			
the course	Explain the term C# (C Sharp)			
	• Clarify the origin of C#			
	• List the versions of C#			
	Outline the basic features of C#			
	Outline the design goals			
	• List the categories of C# Type system			
	 Explain the concept of boxing and unboxing 			
	• Declare a variable in C#			
	 Describe the naming conventions 			
	 Identify common variables in C# 			
	 Describe statements, statement blocks and comments 			
	• State the minimal requirement to use C#			
	Outline the steps involved in building console applications			
	• State the procedure for building and running GUI applications			
	Outline the steps required to build a code library			
	Create a C# project in VisualStudio.NET			
	Identify C# expressions			
	• List common operators used in C#			

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. C# FUNDAMENTALS. C# and .NET	Lecture, presentation, conversation,	2h
Framework	discussion. PowerPoint/Teams video tutorial	
2. C# TYPES. C# Type System. Boxing and	Lecture, presentation, conversation,	2h
unboxing. C# Data Types	discussion. PowerPoint/Teams video tutorial	
3. LANGUAGE BASICS. Naming	Lecture, presentation, conversation,	2h
Conventions.	discussion. PowerPoint/Teams video tutorial	
C# Syntax.		
4. LANGUAGE BASICS. Getting started with	Lecture, presentation, conversation,	2h
C#.	discussion. PowerPoint/Teams video tutorial	
5. C# APPLICATIONS. Creating Console	Lecture, presentation, conversation,	2h
Assemblies.	discussion. PowerPoint/Teams video tutorial	
6. C# APPLICATIONS. Creating GUI	Lecture, presentation, conversation,	6h
Assemblies	discussion. PowerPoint/Teams video tutorial	
7. C# APPLICATIONS. Creating Code	Lecture, presentation, conversation,	4h
Library Assemblies	discussion. PowerPoint/Teams video tutorial	
8. VISUAL STUDIO.NET. Creating a Project.	Lecture, presentation, conversation,	4h
	discussion. PowerPoint/Teams video tutorial	
9. VISUAL STUDIO.NET. Language	Lecture, presentation, conversation,	2h
Concepts.	discussion. PowerPoint/Teams video tutorial	
10. VISUAL STUDIO.NET. C# Expressions	Lecture, presentation, conversation,	2h
and Operators	discussion. PowerPoint/Teams video tutorial	

References

- 1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation of Computer Programs. The MIT Press.
- 2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented Development". *Communications of the ACM* **49** (2): 123–128. http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-08-08.
- 3. Booch, Grady (1997). Object-Oriented Analysis and Design with Applications. Addison-Wesley.
- 4. Date, C. J and Hugh, D. (2006). Foundation for Future Database Systems: The Third Manifesto (2nd Edition)
- 5. Date, C. J and Hugh, D. (2007). Introduction to Database Systems: The Sixth Manifesto (6th Edition)
- 6. John C. Mitchell, Concepts in programming languages, Cambridge University Press, 2003, p.278
- 7. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio 2005
- 8. Kay, Alan. *The Early History of Smalltalk*. http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.html.
- 9. Martin, A and Luca, C. (2005). A Theory of Objects.
- 10. Michael Lee Scott (2006). Programming language pragmatics, (2nd Edition) p. 470

Seminars+laboratories	Teaching methods	remarc
.NET Framework. Programs compilation	Project-work, computer-based activities,	2+2
	laboratory activities	
C# language. Console applications.	Project-work, computer-based activities,	2+2
	laboratory activities	
Structure of the C# program. Language syntax.	Project-work, computer-based activities,	2+2
Data types. Conversions. Applications.	laboratory activities	

Constants. Variables. Expressions and	Project-work, computer-based activities,	2+2
operators. Applications.	laboratory activities	
Collections and libraries. Applications.	Project-work, computer-based activities,	2+2
	laboratory activities	
Foreach instruction. Applications.	Project-work, computer-based activities,	2+2
	laboratory activities	
Try-catch-finally and throw. Applications.	Project-work, computer-based activities,	2+2
	laboratory activities	
Visual programming environment C#.	Project-work, computer-based activities,	4+4
Applications.	laboratory activities	
Windows. Controls. Applications.	Project-work, computer-based activities,	6+6
	laboratory activities	
System. drawing. Applications.	Project-work, computer-based activities,	4+4
	laboratory activities	

References

- 1. Pierce, Benjamin (2002). Types and Programming Languages. MIT Press.
- 2. J.Richter, Applied Microsoft .Net Framework Programming, 2002.
- 3. Conger David, Programarea în C#, Ed. All, 2005.
- 4. C# Practical guide. https://msdn.microsoft.com/en-us/library/kx37x362.aspx 2016
- 5. Net https://msdn.microsoft.com/en-us/library/ff361664.aspx 2016
- 6. C# Programming Wikibooks https://en.wikibooks.org/wiki/C_Sharp_Programming 2016

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

The knowledge C Sharp is increasingly valued in programming for various domains such as: the media, medicine, Web services, presentation of companies and organisations on the Internet. There are plenty of employment opportunities at local, regional and international level.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final		
			grade		
10.4 Course	Final evaluation	Written paper	60%		
10.5 Seminar/laboratory	Continuous assessment	Laboratory activities	40%		
		portfolio			
10.6 Minimum performance standard:minimum grade 5 at each criteria					
Modelling and solving problems of average complexity, using mathematics and computer science.					

Submission date	Course leader signature	Seminar tutor signature
Date of approval by Department members		Department director signature