SYLLABUS

COMPUTATIONAL INTELLIGENCE

1. Information on academic programme

1.1. University	"1 Decembrie 1918" from Alba Iulia
1.2. Faculty	Faculty Of Exact Sciences and Engineering
1.3. Department	Informatics, Mathematics and Electronics Department
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science / 251201, 251203, 251204

2. Information of Course Matter

2.1. Course		COMPUTATION	ONAL INTE	LLIGENCE	2.2.	Code		CSE 302	2
2.3. Course Leader Rotar Corina			na						
2.4. Seminar Tuto	r		Rotar Corina						
2.5. Academic	III	2.6. Semester	II	2.7. Type of		E	2.8. Type of		Op
Year				Evaluation	n	(C- Compulsory, Op – optional,			
				(E – final exam/			F - Facultative)		
				CE - colloquy exam	ination /				
				CA -continuous asse	essment)				

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	48	3.5. course	24	3.6. seminar, laboratory	24
hours in the curriculum					
Allocation of time:					
Individual study of readers					20
Documentation (library)					20
Home assignments, Essays, Portfolios					50
Tutorials					-
Assessment (examinations)				12	
Other activities				-	

3.7 Total number of hours for individual	102
study	
3.9 Total number of hours per semester	150
3.10 Number of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	Imperative / Procedural programming
4.2. competence-based	C1.1 The appropriate description of programming paradigms and of specific language mechanisms, as well as the identification of differences between semantic and syntactic aspects.
	C1.3 The development of correct source codes and the testing of various components in a known programming language, given a set of design specifications

5. Requisites (where applicable)

5.1. course-related	Room equipped with video projector / boar		
5.2. seminar/laboratory-based	Laboratory - computer, Software: Visual Studio 2010, Internet access.		

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Professional competences	C1 Programming in high-level languages C3 The use of computer tools in an interdisciplinary context C4 The use of the theoretical basis of computer science and of formal models
Transversal competences	Not applicable

7. Course objectives (as per the programme specific competences grid)

<u> </u>	
7.1 General objectives of	Develop the students' ability to design software that is dedicated for solving the
the course	difficult problems by exploiting evolutionary/bio-inspired algorithms.
7.2 Specific objectives of	Study of the algorithms that is based on natural paradigms.
the course	Skills for approaching the complex problems in terms of evolutionary algorithms.
	Analytical study of the advantages and disadvantages of traditional algorithms
	versus stochastic algorithms for optimization problems.

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. Fundamentals of Intelligence Computation	Lecture, conversation, exemplification	2
2. Paradigm of Genetic Algorithms	Lecture, conversation, exemplification	2
3. Paradigm of Evolutionary Strategies	Lecture, conversation, exemplification	2
4. Genetic Programming. Evolutionary programming	Lecture, conversation, exemplification	2
5. Artificial Immune Systems	Lecture, conversation, exemplification	2
6. Particle Swarm Optimization Technique	Lecture, conversation, exemplification	2
7. Ants Colonies. Other natural paradigm	Lecture, conversation, exemplification	2
8. Application of evolutionary algorithms in optimization	Lecture, conversation, exemplification	4
9. Introduction to fuzzy logic. Fuzzy systems.	Lecture, conversation, exemplification	4
10. Introduction in Neural networks	Lecture, conversation, exemplification	4
		_
Seminars-laboratories	Teaching methods	
1. Fundaments	Project-work, computer-based activities, laboratory activities	4
2. Genetic Algorithms. Description of the standard genetic algorithm. Fitness function. Specific operators: crossover, mutation, selection.	laboratory activities	2

3. Paradigm of Evolutionary Strategies. Specific	laboratory activities	2
operators.		
4. Genetic Programming. Examples	laboratory activities	2
5. Evolutionary Programming. Examples	laboratory activities	2
6. Artificial immune systems. Examples (Network	laboratory activities	2
Security).		
7. Particle Swarm Optimization technique. Examples	laboratory activities	4
8. Ant Colonies. Evolutionary approach for Travelling	laboratory activities	4
Salesman Problem. Other natural paradigm.		
9. Application of evolutionary algorithms in	laboratory activities	4
optimization. Multimodal Optimization, multi-criteria		
Optimization, Dynamic Optimization 2 laboratories		

References

- 1. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, Inc., 1989.
- 2. Bäck T., Evolutionary Algorithms in Theory and Practice, Oxford University Press, 1996
- **3.** Dumitrescu D., Lazzerini B., Jain L.C., Dumitrescu A., Evolutionary Computation, CRC Press, Boca Raton London, New York, Washington D.C., 2000
- 4. Rotar C., Modele naturale si algoritmi evolutivi, Ed. Accent, Cluj Napoca, 2008. (in Romanian, ppt presentation in English)

1. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

- Currently there is a strong interest towards the development of intelligent software applications in various fields such as mobile phones, gaming industry, etc. Intelligent Computation discipline supports training of specialists in this direction, forming strategies and skills to apply intelligent algorithms where traditional methods are not effective.
- Coexistence of technical expertise within the University, particularly of specialization Applied Electronics is an additional reason to encourage the forming of the interdisciplinary and complementary teams.

2. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final
			grade
10.4 Course	Final evaluation	Written paper	60%
	-	-	-
10.5 Seminar/laboratory	Continuous assessment	Laboratory activities portfolio	40%
	-		-

10.6 Minimum performance standard: 5

Implementation and documentation of the software units in high-level programming languages and efficiently used programming environments

Submission date

Course leader signature

Seminar tutor signature

Date of approval by Department members

Department director signature