SYLLABUS

ARTIFICIAL INTELLIGENCE

1. Information on academic programme

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Informatics and Engineering
1.3. Department	Informatics, Mathematics and Electronics
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science

2. Information of Course Matter

	00425	- 11200000						
2.1. Course		Artificial intell	Artificial intelligence		Code		CSE 30	1
2.3. Course Leader	Course Leader Muntean Maria-Viorela			Muntean Maria-Viorela				
2.4. Seminar Tutor	2.4. Seminar Tutor		Muntean Maria-Viorela					
2.5. Academic	III	2.6. Semester	I	2.7. Type of	CE	2.8. Type of	course	C
Year				Evaluation		(C-Compulsory,	Op – optional,	
				(E – final exam/		F - Facultative)		
				CE - colloquy examination /				
				CA -continuous assessment)				

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours in the curriculum					
Allocation of time:					Hours
Individual study of readers					40
Documentation (library)					20
Home assignments, Essays, Portfolios					30
Tutorials					2
Assessment (examinations)					2
Other activities					-

3.7 Total number of hours for individual study	94
3.8 Total number of hours in the curriculum	56
3.9 Total number of hours per semester	150
3.10umber of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	-
4.2. competence-based	-

5. Requisites (*where applicable*)

5.1. course-related	Room equipped with video projector / board / Microsoft Teams Platform	
5.2. laboratory-based	Laboratory – computers, Internet access / Microsoft Teams Platform	

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

<u> </u>	
Professional competences	
Transversal competences	

7. Course objectives (as per the programme specific competences grid)

	==== = ================================
7.1 General objectives of the course	- Technical equipment: laptop, video projector
	- For students: course support in editable format
7.2 Specific objectives of the course	- Technical equipment: laptop, video projector

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. INTRODUCTION	Lecture, conversation,	2h
	exemplification	
2. SOLVING IA PROBLEMS. SEARCH METHODS.	Lecture, conversation,	2h
ALGORITHMS	exemplification	
3. PROBLEM SOLVING STRATEGIES	Lecture, conversation,	2h
	exemplification	
4. KNOWLEDGE REPRESENTATION MODELS.	Lecture, conversation,	2h
FIRST-ORDER LOGIC.	exemplification	
5. DECISION RULES MODEL	Lecture, conversation,	2h
	exemplification	
6. THE STRUCTURED KNOWLEDGE MODEL	Lecture, conversation,	2h
	exemplification	
7. APPROXIMATE REASONING. NOTIONS OF	Lecture, conversation,	2h
FUZZY SET THEORY	exemplification	
8. PLANNING AND MACHINE LEARNING	Lecture, conversation,	2h
	exemplification	
9. THEORETICAL FUNDAMENTALS OF	Lecture, conversation,	2h
ARTIFICIAL NEURONAL NETWORKS	exemplification	
10. RECURRENT NEURONAL NETWORKS. SELF-	Lecture, conversation,	2h
ORGANIZING MAPS. UNSUPERVISED	exemplification	
LEARNING		21
11. SELF-ORGANIZING NEURAL NETWORKS	Lecture, conversation,	2h
(KOHONEN). DEEP-LEARNING	exemplification	21
12. EXPERT SYSTEMS	Lecture, conversation,	2h
10 NEW DAY NETWODY GARNON	exemplification	
13. NEURAL NETWORKS APPLICATIONS	Lecture, conversation,	4h
	exemplification	
ARTIFICIAL INTELLIGENCE: An Essential Beg	inner's Guide to AI, Machine Learni	ng, Robotics, The

- Internet of Things, Neural Networks, Deep Learning, Reinforcement Learning, and Our Future, Neil WILKINS (2019), Autori: WILKINS, Neil, ISBN: 9781950922512
- 2. DOMINANT ALGORITHMS TO EVALUATE ARTIFICIAL INTELLIGENCE: FROM THE VIEW OF THROUGHPUT MODEL / Waymond RODGERS (2022), Autori: RODGERS, Waymond; ISBN: 9789815049565

3. Russell, Stuart J., Norvig, Peter, Artificial Intelligence: A Modern Approach, 1995.

Laboratories	Teaching methods	
1. Search trees. Heuristic search. Classic examples of smart	Project-work, computer-based	2h
games.	activities, laboratory activities	
2. First-order logic examples.	Project-work, computer-based	2h
	activities, laboratory activities	
3. Software applications in the field of Artificial Intelligence.	Project-work, computer-based	6h
Decision rules	activities, laboratory activities	
4. Software applications in the field of Artificial Intelligence.	Project-work, computer-based	6h
Fuzzy systems	activities, laboratory activities	
5. Software applications in the field of Artificial Intelligence.	Project-work, computer-based	8h
Intelligent agent systems.	activities, laboratory activities	
6. Software applications in the field of Artificial Intelligence.	Project-work, computer-based	2h
Neural networks	activities, laboratory activities	
7. Project presentation and evaluation	Project-work, computer-based	2h
	activities, laboratory activities	

References

- 1. ARTIFICIAL INTELLIGENCE WITH PYTHON: Your complete guide to building intelligent apps using Python 3.x, Alberto ARTASANCHEZ; Prateek JOSHI (2020), Autori: ARTASANCHEZ, Alberto; JOSHI, Prateek, Editia a doua, ISBN: 9781839219535
- 2. https://www.swi-prolog.org/pldoc/doc_for?object=manual
- 3. https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/
- 4. https://www2.cs.sfu.ca/CourseCentral/310/pwfong/Lisp/
- 5. https://common-lisp.net/tutorials

1. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

2. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final	
			grade	
10.4 Course	Final evaluation	Written evaluation	50%	
10.5 Seminar/laboratory	Laboratory activities	Practical evaluation	50%	
	portfolio			
10.6 Minimum performance standard: minimum 5 at written evaluation and minimum 5 at practical evaluation				

Submission date	Course leader signature	Seminar tutor signature

Date of approval by Department members	Department director signature
	