SYLLABUS

University year 2023-2024 Year of Study 2/ Semester 2

1. Information on academic programme

1.1. University	"1 Decembrie 1918" Alba Iulia
1.2. Faculty	Faculty Of Exact Sciences and Engineering
1.3. Department	Informatics, Mathematics and Electronics
1.4. Field of Study	Computer Science
1.5. Cycle of Study	undergraduate
1.6. Academic programme / Qualification	Computer Science, 251201, 251204, 251203

2. Information of Course Matter

2.1. Course		Formal languages and automata		2.2. Code		CSE 209)	
2.3. Course Leader			Lect. Dr. Oroian-Boca Maria Loredana					
2.4. Seminar Tutor	•		Asist. Drd. Cristea Daniela					
2.5. Academic Year	II	2.6. Semester	II	2.7. Type of Evaluation (E – final exam/ CE - colloquy examinal CA -continuous assessm		2.8. Type of (C-Compulsory, F - Facultative)		0

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours				-	
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours in the curriculum					
Allocation of time:					Hours
Individual study of readers					20
Documentation (library)					10
Home assignments, Essays, Portfolios					10
Tutorials					
Assessment (examinations)				4	
Other activities				-	

3.7 Total number of hours for individual	44
study	
3.9 Total number of hours per semester	100
3.10 Number of ECTS	4

4. Prerequisites (*where applicable*)

4.1. curriculum-based	1. Mathematical base of computers
4.2. competence-based	C4. Using the theoretical foundations of computer science
	and formal models

5. Requisites (*where applicable*)

5.1. course-related	Room equipped with video projector / board
5.2. seminar/laboratory-based	Laboratory – computer, Software: UML Diagrams, Internet
	access.

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Professional competences	C4.1 The definition of base concepts and principles of computer science and
The second second	mathematics as well as of the mathematical theories and models.
	C4.2 The interpretation of mathematical and computer science (formal) models.
	C4.3 The identification of appropriate models and methods for solving real-life
	problems.
	C4.4 The use of simulation in the study of the behavior of developed models and
	evaluation of results.
	C4.5 The embedding of formal models in specific applications in various domains.
Transversal competences	

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of	Acquiring fundamental knowledge on the concept of mathematical modeling, the
<u>J</u>	
the course	mathematical models, deterministic scheduling and implementation of a computer
	language;
7.2 Specific objectives of	Formation of complex problem solving skills required in the interpretation of the
the course	expressions and instructions of a programming language and the implementation
	of a program to implement that language.

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. Getting the necessary mathematical theory of formal languages	Lecture, conversation, exemplification	Course 1 – 2
2. Grammars and formal languages	Lecture, conversation, exemplification	Course 3 – 4
3. Finite machines	Lecture, conversation, exemplification	Course 5 – 6
4. Regular expressions	Lecture, conversation, exemplification	Course 7 – 8
5. Grammars and regular languages	Lecture, conversation, exemplification	Course 9 – 10
6. Context free grammars and languages	Lecture, conversation, exemplification	Course 11 – 12
7. Elements of the theory of compilation	Lecture, conversation, exemplification	Course 13 - 14
Seminars-laboratories	Teaching methods	
	Project-work, computer-based activities, laboratory activities	
1. Complements of Mathematics	laboratory activities	S1 – 2

2. Organization and problem solving grammar	laboratory activities	S3 – 5
3. Achieving finite automata	laboratory activities	S6 – 8
4. Applications of regular expressions	laboratory activities	S9 – 11
5. Applications with context-free grammars and languages	laboratory activities	S12 – 14

References

- 1. Formal Language & Automata Theory. First Edition: 2007 2008 A. A. Puntambekar Technical Publications Pune, Amit Residency, 412, Shaniver Peth, Pune, India.
- 2. Formal Language and Automata Theory K. V. N. Sunitha, N. Kalyani Typeset at Bukprint, India.
- 3. Theory of Automata & Formal Languages A. M. Natarajan, A. Tamilarasi, P. Balasubramani New Age International Publishers.
- 4. Gr. Moldovan Limbaje Formale și Teoria Automatelor EduSoft 2005.
- 5. Gr. Moldovan Limbaje formale și tehnici de compilare Univ. Babeș-Bolyai Cluj-Napoca 2002.
- 6. Gh. Păun Gramatici contextuale Ed. Academiei, București, 1982.

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

Advanced data modeling methodologies, regression models, mathematical programming models, deterministic models, model quality assessment

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final		
			grade		
10.4 Course	Final evaluation	Written paper	60%		
	-	-	-		
10.5 Seminar/laboratory	Continuous assessment	Laboratory activities portfolio	40%		
	-		-		
10.6 Minimum performance standard:					
Knowledges about grammar, regular expressions and languages					

Submission date	Course leader signature		Seminar tutor signature	
	Oroian-Boca Maria Loredar	na	Cristea Daniela	
Date of approval by Department membe	rs	Departmental head sign	ature	
Date of approval by Faculty Council		Dean signature		