
 SYLLABUS

Object Oriented Programming

1. Information on academic programme

1.1. University „1 Decembrie 1918” din Alba Iulia

1.2. Faculty Faculty of Computer Science and Engeneering

1.3. Department Exact Sciences and Engineering Department

1.4. Field of Study Computer Science

1.5. Cycle of Study Bachelor

1.6. Academic program / Qualification Computer Science

2. Information of Course Matter

2.1. Course Object Oriented Programming 2.2. Code CSE 204

2.3. Course Leader Rotar Corina

2.4. Seminar Tutor Cristea Daniela

2.5. Academic

Year

II 2.6. Semester I 2.7. Type of

Evaluation

 (E – final exam/

CE - colloquy examination /

CA -continuous assessment)

E 2.8. Type of course
(C– Compulsory, Op – optional,

F - Facultative)

C

3. Course Structure (Weekly number of hours)

3.1. Weekly number of

hours
4 3.2. course 2 3.3. seminar, laboratory 2

3.4. Total number of

hours in the curriculum
56 3.5. course 28

3.6. seminar, laboratory 28

Allocation of time: Hours

Individual study of readers 10

Documentation (library) 20

Home assignments, Essays, Portfolios 28

Tutorials -

Assessment (examinations) 11

Other activities……. -

3.7 Total number of hours for individual

study
69

3.8 Total number of hours in the

curriculum
56

3.9 Total number of hours per semester 125

3.10 Number of ECTS 5

3. Prerequisites (where applicable)

4.1. curriculum-based Data Structures

4.2. competence-based C1 Programming in high-level languages

C1.1 The appropriate description of programming paradigms and of specific language

mechanisms, as well as the identification of differences between semantic and syntactic

aspects.

C1.2 The explaining of existing software applications using different abstraction layers

(architecture, packages, classes, methods), correctly using base knowledge.

C1.3 The development of correct source codes and the testing of various components in a
known programming language, given a set of design specifications.

C1.4 The testing of various applications given specific testing plans

C1.5 Developing program units and their documentation.

4. Requisites (where applicable)

5.1. course-related Room equipped with video projector / boar

5.2. seminar/laboratory-based Laboratory – computer, Software: Visual Studio 2010,

BorlandC/Codeblocks/DevC++, Internet access.

5. Specific competences to be aquired (chosen by the course leader from the programme general

competences grid)
Professional competences C1 Programming in high-level languages

C2 Development and maintenance of computer applications

Transversal competences Not applicable

6. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course Develop students' ability to design software that is dedicated to solving

medium complexity problems by using object oriented paradigm.

Deepening the concept of class and object, and gaining the skills to design

classes and associated libraries.

Creating a rigorous and efficient object oriented programming style

7.2 Specific objectives of the course Developing students' ability to effectively manage information by using

classes and relations between classes.

Drawing a coherent documentation on the applications of average

complexity.

7. Course contents

8.1 Course (learning units) Teaching methods Remarks

1. Object-oriented programming paradigm. Basic

concepts.

Lecture, conversation,

exemplification

2. Programming with data abstraction. Features in C + +. Lecture, conversation,

exemplification

3. Classes and objects. Data members and methods. Lecture, conversation,

exemplification

4. Constructors and destructor. Copy constructor Lecture, conversation,

exemplification

5. Static keyword in classes. Lecture, conversation,

exemplification

6. friend keyword.Overloading binary operators. Lecture, conversation,

exemplification

7. Overloading operators (II). Lecture, conversation,

exemplification

8. Conversions. Lecture, conversation,

exemplification

9. Derived classes, base classes. Inheritance. Lecture, conversation,

exemplification

10. Inheritance. Multiple inheritance. Lecture, conversation,

exemplification

11. Virtual methods Lecture, conversation,

exemplification

12. Polymorphism. Lecture, conversation,

exemplification

13. Generic classes. Lecture, conversation,

exemplification

14. Exceptions. Standard Inputs-Outputs. Lecture, conversation,

exemplification

Seminars-laboratories Teaching methods

Introduction to OOP Project-work, computer-based

activities, laboratory activities

Classes as abstract data types in C++. laboratory activities

Classes. Structure of a class. Components: attributes,

methods. Examples.

laboratory activities

Public, private, protected. Examples. laboratory activities

Constructors and destructors. Applications. laboratory activities

Operators. Operator overloading. laboratory activities

Visual Studio. NET, C #. Console applications. laboratory activities

Standard classes and user classes. Defining classes in C

#.

laboratory activities

Heritage. Friend classes. Examples in C + + than C #. laboratory activities

Static and virtual methods. Static and dynamic binding.

Design and implementation of virtual methods.

laboratory activities

Windows applications using predefined programming

classes in C #.

laboratory activities

Polymorphism. Examples. laboratory activities

References
1. Bruce Eckel, Thinking in C++, free online.

2. Bjarne Stroustrup, The C++ Programming Language, Addison Wesley, 1997.

3. H. Schildt: C++ manual complet, e-book.

4. Peter Muller: Introduction to Object-Oriented Programming Using C++ , e-book.

5. Rotar C., Object oriented Programming - Lecture notes

1. Corroboration of course contents with the expectations of the epistemic community’s significant

representatives, professional associations and employers in the field of the academic programme

Not applicable

2. Assessment

http://www.gnacademy.org/uu-gna/text/cc/material.html

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final

grade

10.4 Course Final evaluation Written paper 60%

- - -

10.5 Seminar/laboratory Continuous assessment Laboratory activities

portfolio

40%

- -

10.6 Minimum performance standard:

Implementation and documentation of the software units in an object oriented programming language and

efficiently using the related concepts.

Submission date Course leader signature Seminar tutor signature

______________ ______________________ _________________________

Date of approval by Department members Department director signature

________________________ ______________________

