
 SYLLABUS

Data Structures

1. Information on academic programme

1.1. University „1 Decembrie 1918” from Alba Iulia

1.2. Faculty Faculty Of Exact Sciences and Engineering

1.3. Department Informatics, Mathematics and Electronics Department

1.4. Field of Study Computer Science

1.5. Cycle of Study Undergraduate

1.6. Academic programme / Qualification Computer Science / 251201, 251203, 251204

2. Information of Course Matter

2.1. Course Data Structures 2.2. Code CSE109

2.3. Course Leader Rotar Corina

2.4. Seminar Tutor Cristea Daniela

2.5. Academic

Year

I 2.6. Semester II 2.7. Type of

Evaluation

 (E – final exam/

CE - colloquy examination /

CA -continuous assessment)

E 2.8. Type of course
(C– Compulsory, Op – optional,

F - Facultative)

C

3. Course Structure (Weekly number of hours)

3.1. Weekly number of

hours
4 3.2. course 2 3.3. seminar, laboratory 3

3.4. Total number of

hours in the curriculum
56 3.5. course 28

3.6. seminar, laboratory 42

Allocation of time: Hours

Individual study of readers 25

Documentation (library) 20

Home assignments, Essays, Portfolios 50

Tutorials -

Assessment (examinations) 10

Other activities……. -

3.7 Total number of hours for individual

study
105

3.9 Total number of hours per semester 175

3.10 umber of ECTS 7

4. Prerequisites (where applicable)
4.1. curriculum-based

Fundamentals of programming

4.2. competence-based
C1.1 The appropriate description of programming paradigms and of specific language

mechanisms, as well as the identification of differences between semantic and syntactic

aspects.

C1.3 The development of correct source codes and the testing of various components in a

known programming language, given a set of design specifications

5. Requisites (where applicable)
5.1. course-related Room equipped with video projector / board

5.2. seminar/laboratory-based Laboratory – computer, Software: Visual Studio 2010, BorlandC, Internet access.

6. Specific competences to be aquired (chosen by the course leader from the programme general

competences grid)
Professional competences C1 Programming in high-level languages

C1.1 The appropriate description of programming paradigms and of specific language

mechanisms, as well as the identification of differences between semantic and syntactic

aspects.

C1.2 The explaining of existing software applications using different abstraction layers

(architecture, packages, classes, methods), correctly using base knowledge.

C1.3 The development of correct source codes and the testing of various components in a

known programming language, given a set of design specifications.

C1.4 The testing of various applications given specific testing plans

C1.5 Developing program units and their documentation.

Transversal competences Not applicable

7. Course objectives (as per the programme specific competences grid)
7.1 General objectives of the

course

Develop students' ability to design software that is dedicated to solving medium

complexity problems.

Deepening the concept of data structure and gaining the skills to design abstract data

types and associated libraries.

Creating a rigorous and efficient programming style

7.2 Specific objectives of the

course

Developing students' ability to effectively manage information by using abstract data

types and rigorously designing the algorithms to process the data.

Drawing a coherent documentation on the applications of average complexity.

8. Course contents

8.1 Course (learning units) Teaching methods Remarks

1. Introduction. Programming paradigms Lecture, conversation, exemplification 2

2. Data structures. Abstract data type (ADT).

Examples: Rational ADT, Compex ADT- 2 sessions

Lecture, conversation, exemplification 2

3. Simple linked lists, circulars, stack, queue. List

ADT.

Lecture, conversation, exemplification 2

4. Double Linked lists Lecture, conversation, exemplification 2

5. ADT Trees Lecture, conversation, exemplification 2

6. ADT tables Lecture, conversation, exemplification 2

7. TAD Graphs. Algorithms on graphs. Lecture, conversation, exemplification 2

8. Programming methods. Divide et Impera

technique.

Lecture, conversation, exemplification 2

9. Greedy method. Lecture, conversation, exemplification 2

10. Branch and Bound method. Lecture, conversation, exemplification 2

11. Backtracking method. - 2 sessions Lecture, conversation, exemplification 2

12. Dynamic programming method. Lecture, conversation, exemplification 2

Seminars-laboratories Teaching methods Remarks

1. Review programming paradigms. Moderately Project-work, computer-based 3

complex problems with different data structures used activities, laboratory activities

2. Data structures. ADT Compex implementation. laboratory activities 3

3. Simple linked lists, circulars lists, stacks, queues.

ADT List.

laboratory activities 3

4. Double linked list. laboratory activities 3

5. Trees. laboratory activities 3

6. Binary search tree. Operations on trees. laboratory activities 3

7. ADT tables laboratory activities 3

8. ADT graphs. Graphs’ representation laboratory activities 3

9. Algorithms on graphs. laboratory activities 3

10. Programming methods. Divide et Impera

techniques.

laboratory activities 3

11. Greedy method-specific issues laboratory activities 3

12. Branch and Bound method-specific issues laboratory activities 3

13. Backtracking method-specific issues laboratory activities 3

14. Dynamic programming method-specific issues laboratory activities 3

References
1. Rotar C., Data structers and algorithms, Ed. Didactica, Alba Iulia, 2008.

2. Bruce Eckel, Thinking in C++, manual online.

3. Bjarne Stroustrup, The C++ Programming Language, Addison Wesley, 1997.

4. H. Schildt: C++ manual complet, electronic book.

5. Peter Muller: Introduction to Object-Oriented Programming Using C++ , electronic book.

1. Corroboration of course contents with the expectations of the epistemic community’s significant

representatives, professional associations and employers in the field of the academic programme

Not applicable. Algorithms and Data Structure is a fundamental subject in the domain which is required in the

curricula of Computer Science specialization. Course content is designed for training the algorithmic thinking

of the students.

2. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final

grade

10.4 Course Final evaluation Written paper 60%

- - -

10.5 Seminar/laboratory Continuous assessment Laboratory activities

portfolio

40%

- -

10.6 Minimum performance standard:

Implementation and documentation of the software units in high-level programming languages and efficiently

used programming environments

Submission date Course leader signature Seminar tutor signature

Date of approval by Department members Department director signature

