SYLLABUS FUNDAMENTAL ALGORITHMS

1. Program General Data

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Informatics and Engineering
1.3. Department	Informatics, Mathematics and Electronics
1.4. Area	Computer Science
1.5. Level	Undergraduate
1.6. Specialization	Computer Science

2. Subject General Data

2.1. Subject		Fundamental a	Fundamental algorithms		Code		CSE202	2
2.3. Course holder/ Lecturer/ Instructor's		Domșa Ovidiu						
Name								
2.4. Teaching Assistant's Name		Bîrluţiu A	driana					
2.5. Year	II	2.6. Semester	I	I 2.7. Evaluation E 2.8. Status (C			(C –	0
			form (E – final			Compulsory,		
			exam/C-			optional, F - 1	Facultative)	
				examination /VP)				

3. Course Structure (Weekly number of hours)

5. Course structure (T -	· · · · · · · · · · · · · · · · · · ·		1	
3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours according to the					
curricula					
Time distribution:					Hours
Individual study using the lecture notes					
Documentation (library)					
Homework, Essays, Portfolios					50
Tutoring					-
Evaluation (exams)					28
Other activities					

3.7 Total number of hours for individual study	108
3.9 Total number of hours per semester	178
3.10 Credits	4

4. Prerequisites

ii i i i i i i i i i i i i i i i i i i	
4.1. Curricula prerequisites	Imperative and procedural programming
	Algorithms and data structures Graph algorithms
4.2. according to the general competencies	

5. Conditions

5.1. Conditions to support teaching	Room equipped with video projector/board.
5.2. Conditions for supporting	Laboratory – computers. Software: BorlandC, Internet acces.
seminar/laboratory activities	

6. Competente specifice acumulate (cele alese de titular din grila de competente)

or competence specific	te acumulate (cele alese de titulai din gina de competente)			
Professional competences	- Development of skills required to solve complex problems using the algorithms studied.			
	- Identify the addressed problems with the studied techniques and algorithms.			
	-The student will be able to translate in algorithmic language (pseudocode, programming			
	language) the solution of complex problems.			
	- Thoroughly study of data structures and algorithms concepts and the methods used for			
	handling them (hash tables, trees, graphs).			
Transversal competences	Cognitive skills: acquisition of basic and specific knowledge about the concept of			
	fundamental algorithm; the ability to identify the applicability of the studied algorithms in			
	real problems; understanding the need of using fundamental algorithms when addressing			
	problems from an algorithmic perspective; acquiring basic knowledge on the concept of			
	algorithms complexity.			
	Affective skills: develop the capacity of analysis and understanding of a highly complex real			
	problems and effectively address it from an algorithmic perspective. Team spirit: encouraging			
	students to work in design, analysis and programming teams. Awarness of the importance of			
	the knowledge and thoroughly study of fundamental algorithms.			

7. Course objectives

77 Course objectives	
6.1 General course objectives	- Develop algorithmic thinking and skills for developing complex
	algorithms.
	- Learning basic tools for developing fundamental algorithms.
	- Knowledge of types of fundamental algorithms and their
	development methods.
	- Use of an advanced programming language for implementing the
	studied algorithms.
6.2 Specific course objectives	

8. Course contents

Lectures	Didactic methods used	Observații
General principles for algorithm development.	Lecture, discussions, examples	
Complexity of algorithms. Asymptotic analysis of worst case	Lecture, discussions, examples	
scenario.		
Numerical algorithms. Optimization of numerical algorithms.	Lecture, discussions, examples	
Primality. Bell numbers. Stirling numbers. Catalan numbers.		
Numbers with special properties.		
Sorting: HeapSort, QuickSort, RadixSort, Median-Algorithms,	Lecture, discussions, examples	
Lower Bounds.		
Analysis of sorting and searching algorithms complexity.	Lecture, discussions, examples	
Parallel sorting: enumeration sort, odd-even transposition sort.	Lecture, discussions, examples	
Parallel sorting: bitonic sort, quicksort on a hypercube.	Lecture, discussions, examples	
Binary search trees.	Lecture, discussions, examples	On-line, Teams
AVL trees. Red-black trees. B-trees.	Lecture, discussions, examples	On-line, Teams
Hash tables. Collision resolution. Hash functions.	Lecture, discussions, examples	On-line, Teams
Graph algorithms: Transitive Closure, Shortest Path Problems,	Lecture, discussions, examples	On-line, Teams
Minimum Spanning Trees.		
Branch&Bound algorithms. Exemples of problems solved	Lecture, discussions, examples	On-line, Teams
with the Branch&Bound method.		
NP-complete algorithms.	Lecture, discussions, examples	
Analysis, evaluation, and feed-back.	Lecture, discussions, examples	

References

- 1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.

3. Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

Seminars-laboratories	Didactic methods used	
General principles for algorithms development.	laboratory works	
Complexity of algorithms.	laboratory works	
Numerical algorithms. Goldbach conjecture. Bell numbers,	laboratory works	
Catalan numbers, Entringer numbers, Stirling. Combinatorial		
calculus. Modular exponentiation. Large numbers operations.		
Sorting: HeapSort, QuickSort, RadixSort, BrickSort	laboratory works	
BucketSort, CountSort.		
Analysis of sorting and searching algorithms complexity.	laboratory works	
Graph algorithms: graphs representations, graphs traversal,	laboratory works	On-line, Teams
shortest paths.		
Graph algorithms: cycles, Eulerian graph, Hamiltonian graph,	laboratory works	On-line, Teams
connectivity, strong connectivity, coupling, flow.		
Binary search trees.	laboratory works	On-line, Teams
Red-black trees. B-trees.	laboratory works	On-line, Teams
Evaluation of arithmetic expressions. Polish notation for	laboratory works	On-line, Teams
arithmetic expressions.		
Practical applications. Examples of practical problems solved	laboratory works	
with efficient methods.		

References

- 1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- 3. Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.
- 9. Corroborating Course content expectations to the epistemic community representatives, professional associations and employers representative for the curricula

-	No	Эt	ap	pl	ic	al	bl	e.
---	----	----	----	----	----	----	----	----

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage from the		
			final mark		
10.4 Course	Final evaluation	Written exam	60%		
	-	-	-		
10.5 Seminar/laboratory	Continuous assessment	Portfolio of laboratory practical works	40%		
	-		-		
10.6 Minimum performance standard:					

Completion date	Instructor's signature	Teaching assistant's signature
23.09.2022		

Date of approval within the department

Head of departament's signature