SYLLABUS Numerical Calculus

1. Information on academic programme

1.1. University	"1 Decembrie 1918"				
1.2. Faculty	Faculty of Computer Science and Engineering				
1.3. Department	Science and Engineering Department				
1.4. Field of Study	Computer Science				
1.5. Cycle of Study	Undergraduate				
1.6. Academic program / Qualification	Computer Science				

2. Information of Course Matter

2.1. Course		Nun	nerical calcu	ilus 2	2.2. (Code		CSE 20)2
2.3. Course Leader	•		Ovidiu Bagdasar						
2.4. Seminar Tuto	r		Ovidiu Bagdasar						
2.5. Academic	II	2.6. Semester	II	2.7. Type of		Ε	2.8. Type of	course	0
Year				Evaluation			(C–Compulsory, Op – optional,		
				(E – final exam/			F - Facultative)		
				CE - colloquy examinat	tion /				
				CA -continuous assessm	nent)				

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of hours in the curriculum	56	3.5. course	28	3.6. seminar, laboratory	28
Allocation of time:					
Individual study of readers					20
Documentation (library)					20
Home assignments, Essays, Portfolios					14
Tutorials					-
Assessment (examinations)					2
Other activities					-

3.7 Total number of hours for individual study	94
3.9 Total number of hours per semester	150
3.10 Number of ECTS	5

4. Prerequisites (*where applicable*)

4.1. curriculum-based	-
4.2. competence-based	_

5. Requisites (*where applicable*)

5.1. course-related	Laboratory equipped with video projector / boar
5.2. seminar/laboratory-based	Laboratory equipped with video projector / boar

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Professional competences	C4.5 The embedding of formal models in specific applications in various domains.
	After browsing the course, the students will gain skills in the use of numerical calculus for transposition of problems in various programming languages. So the discipline contributes to the formation of some general skills specific for the study domain.
Transversal competences	-

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course	Introducing basic concepts and methods of numerical analysis. Initiating students in methods of numerical programming for solving mathematical problems and for start using numerical software. Students have to know the fundamental concepts of numerical analysisand various numerical algorithms. These specific objectives allow modeling and solving complex problems using knowledge of mathematics and informatics
7.2 Specific objectives of the course	 Students must: -know the fundamental concepts of numerical analysis. -modeling and solving problems using knowledge of mathematics. Achieving these specific objectives allows:
	C4.1 Define the concepts and principles of computer science and mathematical theories and models;
	C4.2 Interpretation of mathematics and computer science models(formal).
	C4.3 Identifying appropriate models and methods to solve real problems.
	C4.4 Using simulation for studying the behaviour of the realized models and performance evaluation.
	C4.5 Incorporation of formal models in specific applications in various fields.

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
(1) 1. Elements of approximation theory and matrix		2 hours –
analysis	exemplification	Face to face
1.1 Analysis and evaluation of arithmetic expressions		
(2) 1.2 Items of errors theory and floating point		2 hours –
arithmetic	exemplification	Face to face
1.3 Calculating the determinant and inverse of a matrix		
(3) 2. Methods and numerical algorithms. Differences	Lecture, conversation,	2 hours –
calculus	exemplification	Face to face
2.1 Gauss elimination method		
(4) 2.2 Total elimination method	Lecture, conversation,	2 hours –
	exemplification	Face to face
(5) 3. Functions approximations	Lecture, conversation,	2 hours –
3.1 Cholesky method	exemplification	Face to face
3.2 Onicescu method		
(6) 3.3 Iterative methods	Lecture, conversation,	2 hours –
3.4 Successive approximations method	exemplification	Face to face
(7) 3.5 Tangent method	Lecture, conversation,	2 hours –
3.6 Secant method	exemplification	Face to face
(8) 4. Numerical differention and integration algorithms	Lecture, conversation,	2 hours –
4.1 Bairstrov method	exemplification	Face to face
(9) 4.2 Finite differences methods	Lecture, conversation,	2 hours –
	exemplification	Face to face
(10) 4.3 Divided differences methods	Lecture, conversation,	2 hours –
	exemplification	Face to face
(11) 5. Numerical algorithms for solving algebraic	Lecture, conversation,	2 hours –
equations	exemplification	Face to face
5.1 Approximation in mean square		
(12) 5.2 Numerical differentiation	Lecture, conversation,	2 hours –
	exemplification	Face to face
(13) 6. Items of Symbolic Calculus	Lecture, conversation,	2 hours –
6.1 Quadrature formulas of Gauss and Newton Cotes	exemplification	Face to face
type		
6.2 Numerical integration using Taylor series		
(14) 6.3 Multipas methods	Lecture, conversation,	2 hours –
9 7 D'Ll's	exemplification	Face to face

8.2 Bibliography

1.Eugen K. Blum – Numerical Analysis and Computation: Theory and Practice, Addison-Wesley, 1972.

2.R.L. Burden, L.J. Faires – Numerical Analysis, PWS Kent, 1986

3.S. Nakamura – Numerical Analysis and Graphic Visualization in MATLAB, Pretice-Hall, 1996

4. Cesar Perez Lopez, MATLAB Programming for Numerical Analysis, Apress, 2014

5. William Bober, Chi-Tay Tsai, Oren Masory, Numerical and Analytical Methods with MATLAB, CRC Press, 2009

2009 Seminars-laboratories	Topphing motheda	
	Teaching methods	2 hours –
(1) 1. Elements of approximation theory and matrix analysis	Questioning, samples, demonstration	2 nours – Face to face
1.1 Analysis and evaluation of arithmetic expressions		Tace to face
(2) 1.2 Items of errors theory and floating point	~ ~	2 hours –
arithmetic	demonstration	Face to face
1.3 Calculating the determinant and inverse of a matrix		
(3) 2. Methods and numerical algorithms. Differences	Questioning, samples,	2 hours –
calculus	demonstration	Face to face
2.1 Gauss elimination method		
(4) 2.2 Total elimination method	Questioning, samples,	2 hours –
	demonstration	Face to face
(5) 3. Functions approximations	Questioning, samples,	2 hours –
3.1 Cholesky method 3.2 Onicescu method	demonstration	Face to face
3.2 Oncescu memou		
(6) 3.3 Iterative methods	Questioning, samples,	2 hours –
3.4 Successive approximations method	demonstration	Face to face
(7) 3.5 Tangent method	Questioning, samples,	2 hours –
3.6 Secant method	demonstration	Face to face
(8) 4. Numerical differention and integration algorithms	Questioning, samples,	2 hours –
4.1 Bairstrov method	demonstration	Face to face
(9) 4.2 Finite differences methods	Questioning, samples,	2 hours –
	demonstration	Face to face
(10) 4.3 Divided differences methods	Questioning, samples,	2 hours –
	demonstration	Face to face
(11) 5. Numerical algorithms for solving algebraic	Questioning, samples,	2 hours – Face to face
equations 5.1 Approximation in mean square	demonstration	race to face
S. Typroximation in mean square		
(12) 5.2 Numerical differentiation	Questioning, samples,	2 hours –
	demonstration	Face to face
(13) 6. Items of Symbolic Calculus	Questioning, samples,	2 hours –
6.1 Quadrature formulas of Gauss and Newton Cotes type	demonstration	Face to face
6.2 Numerical integration using Taylor series		
(14) 6.3 Multipas methods	Questioning, samples,	2 hours –
	demonstration	Face to face

Bibliography

1.Eugen K. Blum – Numerical Analysis and Computation: Theory and Practice, Addison-Wesley, 1972. 2.R.L. Burden, L.J. Faires – Numerical Analysis, PWS Kent, 1986 3.S. Nakamura – Numerical Analysis and Graphic Visualization in MATLAB, Pretice-Hall, 1996

4. Cesar Perez Lopez, MATLAB Programming for Numerical Analysis, Apress, 2014

5. William Bober, Chi-Tay Tsai, Oren Masory, Numerical and Analytical Methods with MATLAB, CRC Press, 2009

1. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

Gaining knowledge by the students regarding this discipline assumes a training on the labour market in such way that they can solve any problems that appear by creating proper mathematics models.

2. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final
			grade
10.4 Course	Final evaluation	Practical exam	60%
	-	-	-
10.5 Seminar/laboratory	Continuous assessment	Laboratory activities	40%
		portfolio	
	-		-

10.6 Minimum performance standard:

In order to obtain credits for this discipline, the students have to operate with elementary items of numerical analysis and use soft for solving different mathematical problems.

Attendance at courses and seminars according to the general requirements of the faculty.

• knowledge of the basics (minimum grade 5 at the final evaluation)

• the ability to apply theoretical notions in practice (minimum 5 seminar average)

The final grade is calculated as the arithmetic mean of the grades awarded for the components specified in 10.4 and 10.5. The exam is considered to be passed if the average is at least 5 (the marks from 10.4 and 10.5 must be higher than 5 each). At each of the exam sessions (including the ones of rest and enlargement) the mark is calculated according to the same rule. In the overdue / enlargement session, only the evidence for which no promotion note has been obtained (minimum 5) can be claimed, unless the student wishes to support the evidence already promoted.

Note: Students can participate in the consultation hours (2 modules / week according to the schedule established at the beginning of the semester) in which the course holder and / or seminar / laboratory answers the students' questions and offers additional explanations related to the content of the course, the laboratory applications and themes.

Submission date Course leader signature Seminar tutor signature 27.09.2022 Date of approval by Department members

Department director signature