SYLLABUS

IMPERATIVE / PROCEDURAL PROGRAMMING 2022-2023

1. Program General Data

1.1. University	"1 Decembrie 1918"
1.2. Faculty	Facultatea de Informatică și Inginerie
1.3. Department	Informatică și Inginerie
1.4. Area	Computer Science
1.5. Level	undergraduate
1.6. Specialization	Computer Science

2. Subject General Data

2.1. Subject		Programming_basics		2.2.	Code		CSE103	3
2.3. Course holder/ Lecturer/ Instructor's Domşa Ovidiu		ridiu						
Name								
2.4. Teaching Assista	ant's N	Jame	Incze Arpad					
2.5. Year	Ι	2.6. Semester	Ι	2.7. Evaluation	Ε	2.8. Status	(C –	0
				form (E – final		Compulsory,		
				exam/C-		optional, F -	Facultative)	
				examination /VP)				

3. Course Structure (Weekly number of hours)

-	3.2. course	2	3.3. seminar, laboratory	2	
56	3.5. course	28	3.6. seminar, laboratory	28	
Time distribution:					
Individual study using the lecture notes					
Documentation (library)					
Homework, Essays, Portfolios				50	
Tutoring				-	
Evaluation (exams)					
Other activities					
	e lecture not	le lecture notes	le lecture notes	le lecture notes	

3.7 Total number of hours for individual study	108
3.8 Total number of hours according to the curricula	70
3.9 Total number of hours per semester	178
3.10 Credits	5

4. Prerequisites

4.1. Curricula prerequisites	
4.2. according to the general competencies	Mathematics at the medium level.

5. Conditions

5.1. Conditions to support teaching	Room equipped with video projector/board.	
5.2. Conditions for supporting	Laboratory – computers. Software: BorlandC, Internet acces.	
seminar/laboratory activities		

6. Competențe specifice acumulate (cele alese de titular din grila de competente)

Professional competences	- Development of skills required to solve problems using the fundamentals		
	structure in algorithms.		
	- Identify the addressed problems with the studied techniques and algorithms.		
	-The student will be able to translate in algorithmic language (pseudo code,		
	programming language) the solution of the elementary date structures and		
	problems.		
	- Thoroughly study of elementary data structures and algorithms concepts and the		
	elementary methods used for handling them (simple data, tables, strings,).		
Transversal competences	Cognitive skills: acquisition of basic and specific knowledge about the concept of		
	elementary algorithm; the ability to identify the applicability of the studied		
	algorithms in real problems; understanding the need of using elementary methods		
	to create algorithms when addressing problems from an algorithmic perspective;		
	acquiring basic knowledge on the concept of algorithms complexity.		
	Affective skills: develop the capacity of analysis and understanding of an		
	algorithmically problems and effectively address it from an algorithmic		
	perspective. Team spirit: encouraging students to work in design, analysis and		
	programming teams. Awareness of the importance of the knowledge and		
	thoroughly study of elementary algorithms.		

7. Course objectives

7. Course objectives	
6.1 General course objectives	- Develop algorithmic thinking and skills for developing
	elementary algorithms.
	- Learning basic tools for developing elementary algorithms.
	- Knowledge of types of methods and data structure regarding
	algorithms and their development methods.
	- Use of an advanced programming language for implementing
	the studied algorithms.
	- Programming in C language knowledge.
6.2 Specific course objectives	

8. Course contents

Lectures	Didactic methods used	Observation
General principles for structured programming and	Lecture, discussions, examples	
algorithm development.		
Definitions: Algorithms. Characteristics. Structure, data	Lecture, discussions, examples	
and algorithmically steps.		
Organizing data and structure in structural programming.	Lecture, discussions, examples	
Linear, alternative and while structures.		
Algorithms: Elaboration, Correctness, Complexity and	Lecture, discussions, examples	
Testing.		

		1
Elementary algorithms. Switch variable values,	Lecture, discussions, examples	
alternative structures, While and repeat structures,		
vectors, mathematical quantification each/exist, Cartesian		
product algorithm.		
Counting, Summary, Searching elementary algoritms.	Lecture, discussions, examples	
Evaluation	Lecture, discussions, examples	On-line,
		Teams
Sub algorithms, defining parameters and variable transfer	Lecture, discussions, examples	On-line,
		Teams
Elementary sorting methods (Bubble sort, Selection Sort,	Lecture, discussions, examples	On-line,
Numbering Sort, Insertion Sort)		Teams
Sorting and searching algorithms complexity. Elementary	Lecture, discussions, examples	On-line,
algorithm methods. Intercalation.		Teams
Recursively algorithms. Recursively function.	Lecture, discussions, examples	On-line,
		Teams
C language. Elementary concepts. Vocabulary. Data	Lecture, discussions, examples	
definition. Input/output data in C.		
Programming structure in C. Instructions IF, WHILE,	Lecture, discussions, examples	
DO, CASE		
Elementary algorithms, applications.	Lecture, discussions, examples	
References		
1. Ovidiu Domsa, Imperative / Procedural programm	ing, Course notes, 2013.	
2. Cormen T.H., Leiserson E.C., Rivest R.R., Introdu	ction in algorithms, MIT Press, 2001.	
3. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured	l Programing, Academic Press, 1972.	
4. Donald E. Knuth, The Art of Computer Program	mming, Volumes 1–3, Addison-Wes	ley Professional
Volume 1: Fundamental Algorithms (3rd edition	n), 1997. Addison-Wesley Professio	onal, Volume 2:
Seminumerical Algorithms (3rd Edition), 1997. A	Addison-Wesley Professional, Volum	e 3: Sorting and
Searching (2nd Edition), 1998. Addison-Wesley Pr	ofessional.	
Seminars-laboratories	Didactic methods used	
General principles for structured programming and	laboratory works	
algorithm development. Examples.		
Describe algorithms using logical schema flow, pseudo	laboratory works	
code language and programming languages.		
C language. IDE Code Blocks. C programs structure. C	laboratory works	
elementary programs examples.		
Elementary C language data and structure representation.	laboratory works	
Input/ Output data in C.		
Structural programming in C.	laboratory works	On-line,
		Teams

laboratory works

laboratory works

laboratory works

laboratory works

On-line, Teams

On-line, Teams

On-line,

Teams

On-line,

Elementary Vectors program examples.

Elementary String program examples.

Counting, numbering, Sum

Elementary algorithm implementation. Switch, Search,

Sorting algorithms. (Bubble sort, Selection Sort,

Numbering Sort, Insertion Sort)		Teams
Application. Sorting and searching algorithms	laboratory works	
complexity. Elementary algorithm methods.		
Intercalation.		
Recursively algorithms. Recursively function. Examples.	laboratory works	
Application.	laboratory works	
Evaluation. Portfolio of laboratory practical works	laboratory works	

References

- 1. Ovidiu Domsa, Imperative / Procedural programming, Course notes, 2013.
- 2. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 3. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

9. Corroborating Course content expectations to the epistemic community representatives, professional associations and employers representative for the curricula

- Not applicable.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage from the		
			final mark		
10.4 Course	Final evaluation	Written exam	50%		
	-	-	-		
10.5 Seminar/laboratory	Continuous assessment	Portfolio of laboratory practical works	50%		
	-		-		
10.6 Minimum performance standard:					

Completion date

23.09.2022

Instructor's signature

Teaching assistant's signature

.....

Date of approval within the department

Head of departament's signature

.....