SYLLABUS

Academic year 2023-2024

Year of study I / Semester II

1. Information on academic programme

1.1. University	"1 Decembrie 1918" from Alba Iulia
1.2. Faculty	Faculty of Computer Sience and Engineering
1.3. Department	Informatics, Mathematics and Electronics Department
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science / 251201, 251203, 251204

2. Information of Course Matter

2.1. Course		Graph algorithm	ıs	2.2.	Code		INFO11	1
2.3. Course Leader			Dr. D	orin Wainberg				
2.4. Seminar Tutor			Dr. D	orin Wainberg				
2.5. Academic Year	I	2.6. Semester	11	2.7. Type of Evaluation (E – final exam/ CE - colloquy examination / CA - continuous assessment)	E	2.8. Type of co (C– Compulso Op – optional, F - Facultative	ourse ory,	С

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of hours	56	3.5. course	28	3.6. seminar, laboratory	28
in the curriculum					
Allocation of time:					hours
Individual study of readers					30
Documentation (library)				20	
Home assignments, Essays, Portfolios				42	
Tutorials					-
Assessment (examinations)					2
Other activities					-

3.7 Total number of hours for individual study	94
3.9 Total number of hours per semester	94+56=150
3.10 Number of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	Linear algebra
4.2. competence-based	C4.1 Defining the basic concepts and principles of the professional field,
	as well as mathematical theories and models.
	C4.2 Interpretation of mathematical and computer model.

5. Requisites (where applicable)

5.1. course-related	Room equipped with video projector / board
5.2. seminar/laboratory-based	Room equipped with board

6. Specific competences to be acquired

Professional competences	 C1.1 The appropriate description of programming paradigms and of specific language mechanisms, as well as the identification of differences between semantic and syntactic aspects. C2.1 The identification of appropriate methodologies for software systems development. C2.2 The identification and explanation of appropriate mechanisms for software systems specification. C2.3 The use of methodologies, specification mechanisms and development environments for the development of computer applications. C6.1. The identification of base concepts and models for computer systems and computer networks. C6.2. The identification and explanation of base architectures for organizing and managing systems and networks. C6.3. The use of various techniques for installing, configuring and managing systems and networks.
Transversal competences	•

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course	Learning the fundamental concepts in graph theory, with a sense of some
	of its modern applications.
7.2 Specific objectives of the course	Our aims in this course are twofold. First, to discuss some of the major results of graph theory, and to introduce the language, methods and terminology of the subject. Second, to emphasize various approaches (algorithmic, probabilistic, etc) that have proved fruitful in modern graph theory: these modes of thinking about the subject have also proved successful in areas of informatics, and we hope that students will find the techniques learnt in this course to be useful in their future works.

8. Course contents		
8.1 Course (learning units)	Teaching methods	Remarks
Preliminaries.	Lecture, conversation	
General notions.		
Ways for representing a graph		
Basic concepts in Graph Theory	Lecture, conversation	
Cyclomatic number		
Graph traversal	Lecture, conversation	
Breadth First Traversal		
Depth First Traversal		
Minimum distances in graphs	Lecture, conversation	
Connected components	Lecture, conversation	
Bipartite graphs	Lecture, conversation	
Maximum matching problem in a bipartite graph		
Hamiltonian paths and circuits	Lecture, conversation	
Chen algorithm		
Foulkes algorithm		
Kaufmann algorithm		
Flow networks	Lecture, conversation	
Bellman-Kalaba algorithm		
Ford algorithm		
Dijkstra algorithm		
Maximum flow in transport networks	Lecture, conversation	
Trees. Deffinitions and theorems.	Lecture, conversation	
Traversal of a dirrected tree	Lecture, conversation	
Trees of minimum values	Lecture, conversation	
Kruskal algorithm		
Sollin algorithm		
Binary trees	Lecture, conversation	
Structural trees	Lecture, conversation	

References

1. Behzad, M., Chartrand, G., Lesniak-Foster, L., Graphs and digraphs, Prindle, Weber and Schmidt, Boston, Massachusetts, 2014.

Bollobas, B., *Graph theory. An introductory course*, Springer-Verlag, New York, Heidelberg, Berlin, 2012.
 Christo⁻des, N., *Graph theory. An algorithmic approach*, Academic Press, 2011.

4. Ford, L., Fulkerson, D. R., Flows in networks, Princeton Univ. Press, 1992.

5. Wainberg, D., Breaz, D., Alb Lupaş, A., Elemente de Algoritmica grafurilor, Ed. Aeternitas, 2010.

Seminars-laboratories	Teaching methods	
Preliminaries.	Exercises and problems	
General notions.		
Ways for representing a graph		
Basic concepts in Graph Theory	Exercises and problems	
Cyclomatic number		
Graph traversal	Exercises and problems	
Breadth First Traversal	-	
Depth First Traversal		
Minimum distances in graphs	Exercises and problems	
	-	
Connected components	Exercises and problems	

Bipartite graphs Maximum matching problem in a bipartite graph	Exercises and problems	
Hamiltonian paths and circuits Chen algorithm Foulkes algorithm Kaufmann algorithm	Exercises and problems	
Flow networks Bellman-Kalaba algorithm Ford algorithm Dijkstra algorithm	Exercises and problems	
Maximum flow in transport networks	Exercises and problems	
Trees. Deffinitions and theorems.	Exercises and problems	
Traversal of a dirrected tree	Exercises and problems	
Trees of minimum values Kruskal algorithm Sollin algorithm	Exercises and problems	
Binary trees	Exercises and problems	
Structural trees	Exercises and problems	

References

1. Behzad, M., Chartrand, G., Lesniak-Foster, L., *Graphs and digraphs*, Prindle, Weber and Schmidt, Boston, Massachusetts, 2014.

2. Bollobas, B., Graph theory. An introductory course, Springer-Verlag, New York, Heidelberg, Berlin, 2012.

3. Christo⁻des, N., Graph theory. An algorithmic approach, Academic Press, 2011.

4. Ford, L., Fulkerson, D. R., Flows in networks, Princeton Univ. Press, 1992.

5. Wainberg, D., Breaz, D., Alb Lupaş, A., Elemente de Algoritmica grafurilor, Ed. Aeternitas, 2010.

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field

Applying the discipline Graph algorithms in building and developing of a computer network is essential. Any company or institution that owns a computer network would need graduates who have successfully completed this subject. Also, a lot of programming techniques are based on the algorithms presented here. Therefore, we can conclude that Graph algorithms is a fundamental course of computer science.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
10.4 Course	Final evaluation	Written paper	50%	
10.5 Seminar/laboratory	Continuous assessment	Tests during the semester	50%	
10.6 Minimum performance standard. Medalling and solving some medium complexity level problems, using the methometical and				

10.6 Minimum performance standard: Modelling and solving some medium complexity level problems, using the mathematical and computer sciences knowledge.

Submission date

Course leader signature

Seminar tutor signature

Date of approval by Department members

Department director signature